
RIES - Rijnland Internet Election System:
a cursory study of published source code

Rop Gonggrijp, Willem-Jan Hengeveld, Eelco Hotting,
Sebastian Schmidt, and Frederik Weidemann

Wij vertrouwen stemcomputers niet
Linnaeusparkweg 98, 1098 EJ Amsterdam, The Netherlands

rop@gonggri.jp

http://www.wijvertrouwenstemcomputersniet.nl

Abstract. The Rijnland Internet Election System (RIES) is a system
designed for voting in public elections over the internet. A rather cur-
sory scan of the source code to RIES showed a significant lack of security-
awareness among the programmers which – among other things – appears
to have left RIES vulnerable to near-trivial attacks. If it had not been
for independent studies finding problems, RIES would have been used
in the 2008 Water Board elections, possibly handling a million votes or
more. While RIES was more extensively studied to find cryptographic
shortcomings, our work shows that more down–to–earth secure design
practices can be at least as important, and the aspects need to be exam-
ined much sooner than right before an election.

Key words: electronic voting, internet voting, RIES, The Netherlands

1 Introduction

The Rijnland Internet Election System (RIES) processed around 90.000 votes
in public elections in The Netherlands in 2004 and 2006. Based on total votes
processed in public elections, RIES is one of the largest internet voting systems
worldwide. As an interesting feature, RIES offers cryptographic end-to-end veri-
fiability. This enables the voter to use cryptography to verify that her or his vote
was counted as cast. After some delay, the source code to RIES was published1

on June 24th 2008. This paper describes the result of a few days of looking at the
source code and documentation of a rather complex internet voting system. This
study began when the source code for RIES was published, on June 24th 2008.
The first preliminary results of this study were available to the Dutch media
and members of parliament four days later on June 28th. This paper can by no
means be understood as an exhaustive study. Such a study would require much
more time, study and effort.

1 http://www.openries.nl/downloads/broncode



2 RIES: a cursory study of published source code

2 Permission

Verifying some of the problems we found in the source code on the actual system
without permission from the people operating RIES would probably be prose-
cutable as computer crime. So in the early evening of Friday, June 27th we asked
nicely and kindly got permission to attempt penetrating the RIES portal server
at https://portal.ries.surfnet.nl from Simon Bouwman at ”Het Water-
schapshuis”, a national cooperation of Water Boards that planned to operate
the servers for the Water Board elections. He also kindly added one of our IP-
numbers to the list of sites allowed to approach this server, a protection measure
they were apparently just installing that very evening.

As a condition for getting permission, we accepted to print a brief reaction
of ”Het Waterschapshuis” along with our findings.

3 Sequence of Events

3.1 Water Boards

The Water Boards (”Waterschappen” in Dutch, sometimes also translated as
”District Water Control Boards”) are 27 different regional authorities dealing
with water management in The Netherlands, a country that has long been highly
dependent on a complex infrastructure of pumps and dykes to stay dry. Dat-
ing back to the 13th century, they are the oldest democratic structures in The
Netherlands and among the oldest in the world. Since they are separate bodies
of government the boards of these authorities are each directly elected by the
people that live and/or own property in their area. In recent times these elec-
tions have been held by postal ballot, and in recent years turnout has been very
low, often far below 30%.

RIES was developed by one of these Water Boards (Hoogheemraadschap
van Rijnland) in conjunction with a number of private companies. It was used
experimentally in the 2004 election by two of the Water Boards, and roughly 70
thousand voters cast their vote via the internet in that election.

3.2 2006 Parliamentary Election

RIES, in a version called RIES-KOA2 was also used for the 2006 national parlia-
mentary election as a complement to the postal voting available to Dutch citizens
residing outside of the Netherlands. (The Netherlands do not offer postal voting
to voters not residing abroad.) Roughly 20.000 votes were cast using RIES in
that election. Because the Netherlands have proportional representation, these
votes were added to the national totals for each candidate.

2 KOA stands for ”Kiezen Op Afstand” (Remote Voting), which is (was?) the Dutch
government’s remote e-voting project.



RIES: a cursory study of published source code 3

3.3 RIES-2008

A lot has happened with regard to electronic voting in The Netherlands in the
past few years. The country was 100% e-Voting in 2006, and has since abondoned
all electronic voting in polling stations. Our previous research [1] into the security
of the Nedap system in use in 90% of the precincts played an important part in
the decision making process. The use of RIES for these low-turnout Water Board
elections would have made RIES the last remaining electronic voting system in
use in The Netherlands.

The Water Boards would have liked to deploy RIES in its present incar-
nation, called RIES-2008, for the Water Board elections, which all took place
simultaneously in November 2008. The ministry of Transport and Water Works
had drafted legislation which, among many other things, also codified various
procedures specific to the RIES system. Our foundation has lobbied with parlia-
ment to force rapid publication of the source code as well as for clear technical
requirements and a procedure to formally test whether a proposed voting sys-
tem meets these requirements. As a consequence the ministry created one and a
half page of requirements [2] which for the greater part simply point to e-Voting
recommendations issued by the Council of Europe [3].

The day after our preliminary findings were made available to the media and
members of parliament, the ministry announced3 that it would likely not approve
RIES. As it turned out, the company hired to do the formal approval (Fox-IT)
had also found very serious problems with RIES. They had concentrated on the
underlying cryptography [4].

3.4 Post-2008

After the ministry’s announcement, the Water Boards have expressed the inten-
tion to continue work on RIES for the 2012 elections. The Water Board elections
of 2008 then ended in a fiasco. There were major problems with the postal bal-
lot, mostly centered on the year of birth that people had to fill out coupled
with the fact that the ballot forms were mixed inside households. Together with
various other problems with scanning the ballots, this led to elections that saw
more than 10% unintentionally spoiled ballots. Also, despite a massive advertis-
ing campaign and changes in the way the election was held, turnout remained
very low, around 20%. After the election, the Water Boards have stated they
would prefer not to hold direct elections again4, making the future of this type
of elections very unclear.

It is interesting to note that during the 2008 elections, RIES was also used for
processing the paper ballots. Each ballot had a unique machine-readable code
printed on it, and on one side of the process, files existed which coupled specific
voters to this unique ID. On the other side of the process, there were files which
3 Announcement to parliament: http://wijvertrouwenstemcomputersniet.nl/

images/9/98/Brief-VenW-geen-internetstemmen.pdf
4 Source: Volkskrant interview available at http://www.volkskrant.nl/binnenland/
article1100640.ece/Foutenmarge_bij_waterschapsverkiezingen_hoog



4 RIES: a cursory study of published source code

coupled these IDs to votes. So though some of the vulnerabilities related to
internet-voting were no longer in play, the vote secrecy related problems largely
remained.

4 Known Security of RIES

4.1 Literature

The www.openries.nl website listed a large number of documents on RIES. On
the page ”What do others think?” we read (translated from Dutch):

Various prominent institutions have tested and positively evaluated RIES:
TNO Human Factors from Soesterberg tested usability of the voting interface; A
team of specialists from Peter Landrocks Cryptomathic (in Aarhus, Denmark)
tested the cryptographic principles; Madison Gurka from Eindhoven tested the
server and network setup and security; A team under supervision of Bart Jacobs
(Radboud University Nijmegen) did external penetration tests.

Scientists [5–10] as well as other parties [11, 12] have looked into various
aspects of the design and/or security of (parts of) RIES.

Apart from purely scientific work, RIES has been subject to an accessibil-
ity test, a browser compatibility test, a modules test, a disaster recovery test,
a functional acceptance test, a chain test, a regression test, a risk analysis, a
security and usage evaluation, a server audit, evaluations of the various elections
held with it and a report [13] to see how RIES matches up to the 112 recommen-
dations of the Council of Europe with regard to e-Voting [3] and many, many
more studies and reports.

4.2 Theoretical Upper Bounds

RIES, as well as many other internet voting systems, can only be as secure as
the weakest parts of the system. With RIES, this means that if an adversary can
steal data from specific parts of the process, vote secrecy is compromised. Also,
election integrity and vote secrecy with RIES depend on cryptographic functions
not being manipulated or observed while running on individual voter PCs. Since
these circumstances place clear upper bounds on the amount of real-world secu-
rity that can be obtained, it is good to mention the largest fundamental threats
in a little more detail.

4.3 Limited Security Against Insiders

Elections like the ones performed with RIES legally require secrecy of the vote.
In RIES this requires the operators to destroy information they held at some
stage during the process. If anyone manages to hold on to this information the
publication of a verification file at the end of the election allows whoever has this
information to tie every vote to an individual voter. Hubbers et al [7] conclude
that the cryptography used in RIES offers no protection against insiders:



RIES: a cursory study of published source code 5

”RIES is built on certain cryptographic primitives, like one-time signatures.
Keys for individual voters are generated centrally. There are no anonymous chan-
nels. The structural protection and safeguards offered by cryptography are there-
fore rather limited. Many of the guarantees in RIES thus rely on organizational
controls, notably with respect to (voter) key generation, production of postal pack-
ages, insider attacks (especially at the server), integrity and authenticity of the
software, and helpdesk procedures.”

The CIBIT rapport [8] concludes (translated from Dutch): ”Vulnerability
of the STUF-C10 file, all temporary variants hereof and KGenVoterKey. Using
the STUF-C10 file one can influence the election and break vote secrecy. These
objects need to be destroyed as soon as the necessity for the presence of these
objects expires.”

Compared to a postal election performed in accordance with proper proce-
dures, one must conclude that RIES created ways to surreptitiously violate vote
secrecy on a scale never before possible. All that is needed for a massive breach
of vote secrecy is a few people, or even a single individual, leaking critical files.

4.4 Household PCs Assumed Secure

Hubbers et al [7] also describe a central assumption during the design of RIES:
”RIES assumes that the voters PCs are secure. Attackers may however em-

ploy malware or even man–in–the–browser attacks to capture voters PCs. Pow-
erful attackers may thus change votes, and so this involves a unique potential
risk for Internet elections.”

Given the prevalence of attacks against client PCs , for example with regard
to electronic banking, it would seem inevitable for attacks to appear once elec-
tronic voting becomes common. The fact that candidates have apparently tried
to submit faked signatures to be on the Water Boards candidate list in the past5

proves that even for these election, there is already an apparent potential for
fraud.

5 Security of RIES: a Look at the Code

We realise that previous researchers studying RIES had only design documents
and not the source code to go by. So even though the source code had not
been independently studied, the sheer amount of serious studies done on the
security of RIES made us doubt if we would spot any problems, given the limited
resources we had to study it. We were not able to perform a structured source
code analysis, everything is this paper is based on a rather cursory look at the
code. But even with our limited resources, we were able to spot quite a number of
rather serious security concerns. We noticed a lack of input validation, creating
verified opportunities for XSS and SQL injection, predictable random generation
5 Hoogheemraadschap van Rijnland, Bestuursverkiezing Rijnland moet door fraude

deels over, Persbericht 12 november 2004, http://www.rijnlandkiest.net/asp/

get.asp?xdl=../views/rijnlandkiest/xdl/Page&ItmIdt=00001440



6 RIES: a cursory study of published source code

(for election management access tokens), hard coded values (for cryptographic
keys, a CVS server, a mail server and an SMS gateway) as well as problems
regarding exception handling.

5.1 Lack of input validation

XSS - Cross-Site Scripting There are locations in the code where information
supplied by the user is passed back on the page that is output by the system.
For example we can see6:

document.location="start.jsp?elid= \
<%= request.getParameter("elid") %>";

as well as7:

<c:set var="section" \
value="<%= request.getParameter("section")%>"/>

By supplying this parameter in a specially crafted URL, the user’s browser
could be made to execute Javascript statements within the context of the user’s
session on the election site. In the case of RIES, the cryptographic routines
that perform the actual act of voting are implemented as client-side Javascript,
making it impossible for users to protect themselves against such attacks by
turning off Javascript.

We found out that we were not the only ones who had spotted this problem.
As mentioned above, the RIES website lists an impressive number of studies into
various aspects of the system. Among them is a report by GOVCERT.NL, the
Dutch government computer emergency response team. They found this problem
and reported it in September of 2006 when they did a ’web application scan’ [14].
They found the same elid variable to be vulnerable, and recommended that the
input and parameters be validated to eliminate the risk of Cross-Site Scripting.
They also ominously said (translated from Dutch):

REMARK: The lack of sufficient input validation can also lead to vulnerabil-
ities such as SQL-injection which are more serious in nature. During the scan
we have not found any such vulnerability.

We are surprised that the makers of RIES present a two year old report of
a scan on their website, apparently without having implemented the recommen-
dations contained therein.

SQL Injection In 2006, GOVCERT.NL had warned RIES: if the programmer
doesn’t check the inputs to his/her code, the program may end up vulnerable to
SQL injection attacks. During the interaction with the program, a user typically
enters all sorts of text strings, such as her username when prompted. (See Fig. 1.)
6 riesvotewin source v1.0/admin/index.jsp, line 29
7 riesvotewin source v1.0/admin/sectionlinks.jsp, line 3



RIES: a cursory study of published source code 7

Fig. 1. Login screen

SQL queries involving user-supplied information in the RIES source code are
all generated by simply inserting whatever the user entered into a query, without
any checking. One of the queries that follows is the one where the code associated
with the login box above tries to find the telephone number for a user to send a
special SMS token to allow that user to log in8:

sbBuffer=new StringBuffer();
sbBuffer.append("select PHONE from OPERATOR where
OPERATOR_ID=’"+sUsername+"’");

oRs=oStmt.executeQuery(sbBuffer.toString());

As is visible from this code, the SQL statement to be processed by the
database server is formed with the sUsername string. The code does not contain
anything to sanitize that string first. If one enters rop in the username box the
query to the SQL server would become:

select PHONE from OPERATOR where OPERATOR_ID=’rop’

Since the program finds no corresponding entry in the OPERATOR ID table it
outputs ”login failed” as shown in Fig. 2.

However, we can make the SQL statement succeed by logging in with a string
as shown in Fig. 3.

The resulting SQL statement now looks like:

select PHONE from OPERATOR where OPERATOR_ID=’rop’ OR 1=1; --’

And as a result we now get the output as shown in Fig. 4. The system has
apparently sent the special not–so–random access code via SMS. Since the SQL
statement succeeded on the first user in the user table, we suspect this user will
have received such an SMS.

To actually enter the system and prove further vulnerabilities, one needs to
play around a little more. We were still experimenting with this when the system

8 riesportal source v1.0.zip/WEB-INF/src/java/org/openries/portal/jaas/

JAASHelperServlet.java, line 347



8 RIES: a cursory study of published source code

Fig. 2. Login failed

Fig. 3. SQL injection

Fig. 4. Please enter SMS code



RIES: a cursory study of published source code 9

suddenly said: ”Service Unavailable”. A few minutes later it said ”Technical
Problem”, and then it finally said ”Closed For The Weekend”. We guess that
since we were testing on a Friday night, indeed the system could be down for
the weekend. It did however briefly re-open on the following Saturday, but after
a few more carefully crafted attempts it was again ”Closed For The Weekend”.

5.2 Errors/problems in code

Predictable Random Tokens The code contains a method of authenticating a
user via her/his mobile phone. The code calls this challenge/response, however it
is technically a response only. When a user wants to log in, the system generates
a random password which is sent to the user via SMS. The user must than enter
this password via the internet. Below is the piece of code9 that does the actual
generation of that ’random’ token:

Random rGen=new Random(new Date().getTime());
String sResult="";
int i=0;
while(i<6) {

sResult+=rGen.nextInt(10);
i++;

}

Random() will present the same output when given the same output of Date()
and getTime(). Even though the latter is in milliseconds, an attacker would only
need a few thousand guesses to figure out the key sent to a phone that she does
not own. Since the code does not prevent someone from trying a few thousand
tokens, this would not prevent the attacker from gaining access.

Note that an attacker can probably acquire a very accurate idea of system
time from the http headers provided by the system or, if the goal is privilege
escalation, from the token received by SMS following a valid login.

Insufficient Exception Handling Often when exceptions are handled in the
code, a message is logged, but no action is taken. For example, in sendResponseSMS10,
the exception handlers are (in pseudo-code) very often structured like the one
in sendResponseSMS:

_sendResponseSMS()
{
try {
executeQuery

9 riesportal source v1.0.zip/WEB-INF/src/java/org/openries/portal/jaas/

JAASHelperServlet.java, line 280
10 riesportal source v1.0.zip/WEB-INF/src/java/org/openries/portal/jaas/

JAASHelperServlet.java, line 332



10 RIES: a cursory study of published source code

if result {
try { sendsms }
catch(all) { return false }

}
else { return false }

}
catch (sqlexception) { logmessage }

return true
}

Since the code contains no return false with the catch(sqlexception),
an exception from the executeQuery will still cause the calling function
sendResponseSMS to succeed and cause the server to display the ’enter-SMS-
response’ page. One of the possible reasons why executeQuery would throw an
sqlexception would be a syntax error in the SQL statement, for instance, caused
by an SQL-injection attempt. But given that SQL syntax errors are ignored, an
attacker can carry his manipulations beyond the point where the program should
abort. This makes constructing more complex SQL-injections significantly easier.
An attacker can now target specific SQL statements, without the need to keep
all the other statements free of errors.

The problem is that RIES tries to trap exceptions from the library functions,
and translate them in true/false but often fails to do a return false. In the
case of the SQL exceptions, it might be even better not to trap these exceptions
at all, but let the JSP server handle this. In most cases an exception should be
a reason to abort any pending operations, not to ’log message and continue’.

5.3 Code mixed with configuration information

Test Key Then there’s a part in org.openries.ripocs.config.ConfigManager
where the code is apparently retrieving a stored ’salt’ value from a file to create,
through XOR, a smartcard key of some sort. The final lines of the code11 that
is supposed to be generating the value are:

// derive AbelPiKey (16 bytes)
return PKCS5.PBKDF1(sPassPhrase, abSalt, PKCS5_ITERATIONS, 16);

However, the entire function is commented out and instead it now reads:

//temp for ketentest 1 because of existing keys in smartcards
return Utils.stringToHex
("0123456789ABCDEF FFFFFFFFFFFFFFFF0123456789ABCDEF");

By interweaving (highly dangerous) testing code and production code in this
way, the designers are waiting for accidents to happen. If this should be done at
all, it needs to be done with #IFDEFs or other more suitable mechanisms.
11 riesripocs source v1.0.zip/src/org/openries/ripocs/config/

ConfigManager.java, line 23



RIES: a cursory study of published source code 11

CVS Server The code exposes a development CVS server that appears to be
running on a regular home ADSL connection12:

:pserver:arnout@cozmanova.xs4all.nl:4202/usr/local/cvs-ries-rep

Mail Server Also, a hardcoded public mail server is used13:

private static String EMAIL_SERVER = "smtp.xs4all.nl";

It is not clear under what circumstances the system sends mail and whether
one could perform attacks if one could destroy, intercept, modify or interject
batches of these e-mails. The concept of ’phishing’ for voting credentials comes
to mind.

SMS gateway The code also contains an SMS gateway with a valid account14:

private String _sServiceURL="https://secure.mollie.nl/xml/sms/";
private String _sUsername="mdobrinic";
private String _sPassword="riesdemo";
private String _sGateway="2";
// development default; 1=more reliable; 2=cheaper

Assuming the authors want their voting system to be ’more reliable’ as op-
posed to ’cheaper’, the setting of the sGateway value shows how easy it is for
undesirable development artifacts to make it into production code, especially if
the programmer doesn’t separate code from configuration.

5.4 Current Status Regarding Fixing These Problems

The URL supplied to download RIES still points to an overview page, but the
links to the actual source code zip files give Microsoft IIS ”The page cannot be
found” error messages. There appears to be no way to verify progress, if any, on
fixing these problems.

6 Conclusions

These are all issues stemming from general poor code quality and a lack of secure
design principles. The cross-site scripting problem, the SQL injection problem
and the token generation problem are especially serious problems that could,
each in and by itself, lead to compromises of the entire system. When the RIES
12 rieslogin source v1.0.zip/org/CVS/Root
13 riessystem source v1.0.zip/source/org/openries/system/messaging/

EmailMessage.java, line 52
14 riessystem source v1.0.zip/source/org/openries/system/messaging/

SMSConfig.java, line 22



12 RIES: a cursory study of published source code

portal is compromised, all election management functions can be performed by
the attackers and all data passed through the portal can be destroyed or manip-
ulated, clearly placing election integrity at risk.

Computer security appears not to be part of the mindset of the people pro-
gramming RIES. For example, in the case of the SQL-problems, it would have
been better to use prepareStatement in addition to sanitizing user input. Nor-
mal best-practice secure design principles prevent most if not all of these prob-
lems from occurring. All problems can be repaired relatively quickly. However,
given the general questions this quick study raises about overall code quality
in the RIES project, such fixes would by no means yield a secure system. We
plucked the low-hanging fruit in the part of the system which was facing the
internet, many other parts of the code have not yet been studied.

We were amazed to find a system so apparently well-studied yet so funda-
mentally and undeniably insecurely programmed. This is not so much criticism
of the people studying before us; it mostly shows how little one can say about se-
curity of a system without access to source code. Scientific studies of RIES seem
to have concentrated on the more scientifically ’sexy’ theoretical security offered
by the inventive cryptographic protocols. Only source code review can efficiently
examine some of the threats posed by very straightforward and down–to–earth
attack methods that are much more likely to be used in the real world.

The scope of this paper is not to completely understand the RIES system
but only to outline a number of immediately-visible security problems. As a
reality check, we are happy to have proven that SQL injection actually works
on the live system. Further examination of RIES, including actually attempting
to disturb/manipulate elections would likely require further study of the inner
workings of RIES and is beyond the scope of this first examination.

Given what we found in the scope of this quick study, it is very worrisome
that a previous version of RIES has actually been used in the context of a real-
world parliamentary election. If society decides to go ahead with internet voting
(thus implicitly deciding that the advantages of remote e-voting outweigh more
fundamental problems with vote secrecy and lack of transparency/observability)
it is clear that more attention should be given to secure programming. Internet
voting suppliers seem reluctant to allow independent study of their source code.
The Water Boards had to be forced by the Dutch Parliament to open the source
code, and code review has also been controversial15 in the recent Austrian na-
tional student body elections where an internet voting system made by voting
technology supplier Scytl was used. Our findings clearly show that society cannot
afford to merely study the outside-world interfaces of an internet voting system,
even if there are ”nice” cryptographic tricks involved.

To create a system that appears secure, there are two approaches. The proper
approach is to design a system with security in mind. The other approach is
to retrofit an insecure system with security-measures that make a system look
secure but which in fact add little security. Such measures are usually intended

15 Source: description of source code review procedures at http://papierwahl.at/

2009/05/19/details-der-sourcecode-einsicht



RIES: a cursory study of published source code 13

to impress onlookers. There are situations where adding an SMS-token is a useful
addition to other security measures. However in combination with the proven
lack of security awareness during the implementation of the system, RIES’ SMS-
token appears to fall in the impress-the-onlookers category.

The www.openries.nl site says: ”Various prominent institutions have tested
and positively evaluated RIES”. This research shows that one must be very wary
if scientific and other studies into some part of a not yet published and chang-
ing system are used to implicitly claim the entire system is secure. No amount
of voluntary studies of some part of a voting system - often paid for by stake-
holders wanting to see the system in use - can ever replace clear and stringent
government-imposed requirements that include independent source code review.
Such reviews need to pragmatically and ’holistically’ look for security problems
as well as test the code against more formal coding standards and practices.

In their 2004 article ’Stemmen via Internet geen probleem’ [6] Hubbers and
Jacobs ”vote in favour” of use of this system when they state (translated from
Dutch): ”Summarizing, [RIES] is a relatively simple, original and understand-
able system that has been implemented with the appropriate care and trans-
parency. [...] When the use of RIES during these Water Board elections is in-
volved, we clearly vote in favour!”. We pose that RIES has quite clearly not been
implemented with ”appropriate care”. Given the dependence of society on their
judgment, scientists should probably refrain from endorsing electronic voting
systems until the entire system is open for public examination and at least until
they have seen independent studies of all parts of the systems involved.

Despite obvious code quality and apparent quality management problems, the
Water Boards need to be commended for the publication of the source code and
documentation as well as for allowing outside researchers to study the security
of the system. It seems that they are at least trying to do the right thing.

The amount of problems we found, as well as the class of problems, imply
that If RIES were ever to be used again in elections, it must undergo much
more testing and quite possibly partial code rewrites. Use of RIES in real-world
elections without allowing independent source code review was, in retrospect,
irresponsible. The attempt by the Water Boards to use RIES in the 2008 elec-
tion even after our findings were known to them shows how deep government
can become entrenched once the e-Voting train is in motion. Recent events in
The Netherlands and Germany seem to indicate that government bodies are
over-reliant on information provided to them voting technology providers. The
Dutch government commission that studied past decision-making with regard
to electronic voting stated in its report [14] (translated from conclusions on p.
51): ”Decennia of trusting the information provided by suppliers Nedap, Sdu and
certivication agency TNO has placed the ministry at a disadvantage.”

The Dutch government had to be forced by a majority in Parliament to
develop any standards at all for internet voting. The resulting half-hearted and
minimalist legal requirements [2] (covering a whole page and a half) or the
recommendations of the Council of Europe [3] that these requirements point to
contain no provisions that would have prevented any of the problems we found.



14 RIES: a cursory study of published source code

7 Acknowledgements

The authors would like to thank Simon Bouwman of ”Het Waterschapshuis” for
giving permission to test some of our attacks against the system. Furthermore
they would like to thank the entire crew of ”Wij vertrouwen stemcomputers
niet” and Zenon Panoussis for their insight and for helping in proofreading this
paper.

8 Reaction Het Waterschapshuis

As stated in the introduction, we agreed with ”Het Waterschapshuis” to include
a brief reaction with our findings. They responded as follows:

”An advantage of open source is that the code can be reviewed and improve-
ments of the code can be made. The published code of RIES is not yet the produc-
tion code. Internal reviews and tests have to be made. Recommendations from
external - as in this paper - are welcome. New versions of the code will be pub-
lished in the coming weeks.

As mentioned in the paper, RIES is a rather complex (internet) voting sys-
tem. RIES contains several sub-systems. Each sub-system is a combination of
software, configuration and administrative procedures. Each sub-system has very
different tasks and settings and also different security requirements. For instance,
the VoteWindow is the only sub-system which is public to the world-wide Inter-
net. All other sub-systems are limited access only, not accessible through the
internet. The RIES-Portal access will be controlled by VPN, RIES-RIPOCS is
only accessible via RIES-Portal, and RIES-ROCMIS is an offline machine used
within a proper set of administrative procedures. Therefore, RIES cannot be eval-
uated from source code alone to measure the security strength.

Keep in mind; this part is NOT production code yet. Many of the issues
are related to proper input validation. And we agree that proper input validation
is required and we will fulfill that requirement. Mainly Struts input validation
mechanism will be used. In the published source packages and the development
system investigated, the feature was not switched on for development reasons.
Therefore again: were in a state of functional sequence test (ketentest) and not
yet in production.”

The original response was slightly longer and added a list where each issue
we found was discussed separately. Since this was a little too long to be included
in this paper, we agreed to include a link to the full response, which will be
available on the RIES website at http://www.openries.nl/wvsn-paper .

There is a lot to be said regarding this reaction, but that would turn this
paper into a discussion forum. Suffice it to say that we stand by our original
conclusions and recommendations. Despite RIES not being used in 2008, the
debate on whether or not RIES is suitable for public elections may well continue
at some point in the future.



RIES: a cursory study of published source code 15

References

[1] Gonggrijp, R., Hengeveld, W.-J.: Studying the Nedap/Groenendaal ES3B voting
computer, a computer security perspective. Proceedings of the USENIX/Accurate
Electronic Voting Technology workshop (2007).

[2] Ministerie van Verkeer en Waterstaat: Regeling waterschapsverkiezingen 2008. 15
mei 2008/Nr. CEND/HDJZ-2008/587, Staatscourant 23 mei 2008, nr. 97 / pag. 11.
http://www.wijvertrouwenstemcomputersniet.nl/images/e/e7/SC85731.pdf

[3] Council of Europe: Recommendation Rec(2004)11 of the Committee of Ministers
to member states on legal, operational and technical standards for e-voting (2004).
https://wcd.coe.int/ViewDoc.jsp?id=778189

[4] Gedrojc, B., Hueck, M., Hoogstraten, H., Koek, M., Resink, S.: Rap-
portage Fox-IT - Advisering toelaatbaarheid internetstemvoorziening waterschap-
pen (2008) http://www.verkeerenwaterstaat.nl/Images/20081302%20Bijlage%

201%20Rapport_tcm195-228336.pdf
[5] Hubbers, E.-M., Jacobs, B. Pieters, W.: RIES - Internet Voting in Action. In R.

Bilof, editor, COMPSAC’05, Proceedings of the 29th Annual International Com-
puter Software and Applications Conference, COMPSAC’05, pages 417-424. IEEE
Computer Society, 2005. 26-28 July 2005. http://www.cs.ru.nl/~hubbers/pubs/
compsac2005.pdf

[6] Hubbers, E.-M., Jacobs, B.: Stemmen via internet geen probleem.Automatisering
Gids #42, 15 October 2004, p.15. http://www.openries.nl/aspx/download.

aspx?File=/contents/pages/77743/stemmenviainternetgeenprobleem.pdf
[7] Hubbers, E., Jacobs, B., Schoenmakers, B., Van Tilborg, H, De Weger, B.:

Description and Analysis of the RIES Internet Voting System 24 June 2008.
http://www.win.tue.nl/eipsi/images/RIES_descr_anal_v1.0_June_24.pdf

[8] Van Ekris, J.: CIBIT, Beoordeling KOA, Een beoordeling van de integriteit
van ”Kiezen op Afstand”, 11 September 2008. http://www.openries.nl/aspx/

download.aspx?File=/contents/pages/77743/eindrapportcibit.pdf
[9] Nijmegen University - Security of Systems:?Server Audit van RIES, 23 July 2004.

http://www.openries.nl/aspx/download.aspx?File=/contents/pages/77743/

reportkun.pdf
[10] Hugo Jonker and Melanie Volkamer, Compliance of RIES to the proposed e-Voting

protection profile, VOTE-ID 2007
[11] Jens Groth, CryptoMathic: Review of RIES (v 0.3), Cryptomathic A/S, 21

January 2004. http://www.openries.nl/aspx/download.aspx?File=/contents/
pages/77743/reviewofries.pdf

[12] Lucas Kruijswijk: Internetstemmen met RIES onder de loep (2006).
http://www.wijvertrouwenstemcomputersniet.nl/Internetstemmen_met_

RIES_onder_de_loep
[13] Unie van Waterschappen: Aanbevelingen van de Raad van Europa,

Evaluatie voorziening internetstemmen RIES, conform artikel 5 on-
derdeel b Regeling waterschaps-verkiezingen 2008, version 6, June 2008.
http://www.openries.nl/aspx/download.aspx?File=/contents/pages/77726/

evaluatieaanbevelingenraadvaneuropa.pdf
[14] GOVCERT.NL: Webapplicatie-scan, Kiezen op Afstand, 1 September 2006

http://www.openries.nl/aspx/download.aspx?File=/contents/pages/77743/

webapplicatie-scan.pdf
[15] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties: Stemmachines, een

verweesd dossier, 17 april 2007 http://www.minbzk.nl/contents/pages/86914/

rapportstemmachineseenverweesddossier.pdf


