
RIES - Rijnland Internet Election System

very quick scan of published source code and documentation

Rop Gonggrijp
Willem-Jan Hengeveld, Eelco Hotting, Sebastian Schmidt, Frederik Weidemann

Stichting "Wij vertrouwen stemcomputers niet"
(“We do not trust voting computers” foundation)

Linnaeusparkweg 98, 1098 EJ Amsterdam, The Netherlands
e-mail: rop@gonggri.jp

Abstract
The Rijnland Internet Election System (RIES) is a system for voting in elections over the internet.
RIES processed around 90.000 votes in public elections in The Netherlands in 2004 and 2006.
Based on total votes processed in public elections, RIES is one of the largest internet voting
systems worldwide. As an interesting feature, RIES offers cryptographic end-to-end verifiability.
This enables the voter to use cryptography to verify that her or his vote was counted as cast. On
June 24th 2008, the source code to RIES was published. A rather cursory scan of this source code
shows a significant lack of security-awareness among the programmers which - among other
things - appears to have left RIES vulnerable to very simple attacks.
Given what we found in the scope of this quick study, it is very worrisome that a previous version
of RIES has been actually used in the context of a real-world parliamentary election. Even if one
believes - as the authors of this paper do not - that remote electronic voting over the internet is a
good idea, it is clear that at the very least more attention should be given to secure programming.
The fact that we discovered deficiencies of this magnitude in very a cursory examination of such
a high profile voting system also raises questions regarding the RIES project and regarding the
way in which governments are implementing electronic voting in general.

Introduction
This paper describes the result of a few days of
looking at the source code and documentation of a
rather complex internet voting system. This study
began when the source code for RIES was
published, on June 24th 2008. The first review
version of this paper was available four days later
on June 28th. This paper can by no means be
understood as an exhaustive study. Such a study
would require much more time and effort as well
as an in-depth understanding of the inner workings
of RIES.

Permission
Verifying some of the problems we found in the
source code on the actual system without
permission from the people operating RIES would
probably be prosecutable as a computer crime. So
in the early evening of Friday, June 27th we asked
nicely and kindly got permission to attempt
penetrating the RIES portal server at https://
portal.ries.surfnet.nl from Simon Bouwman at
"Het Waterschapshuis", a national cooperation of
Water Boards that plans to operate the servers for

the Water Board elections. He also kindly added
one of our IP-numbers to the list of sites allowed to
approach this server, a protection measure they
were apparently just installing that very evening.
As a condition for getting permission, we accepted
to print a brief reaction of "Het Waterschapshuis"
along with our findings.

History of RIES

Water Boards

The Water Boards ("Waterschappen" in Dutch,
sometimes also translated as "District Water
Control Boards") are 27 different regional
authorities dealing with water management in The
Netherlands, a country that has long been highly
dependent on a complex infrastructure of pumps
and dykes to stay dry. They rank among the oldest
democratic structures in The Netherlands. Since
they are separate bodies of government the boards
of these authorities are each directly elected by the
people that live and/or own property in their area.
These elections are typically postal elections, and

1

mailto:rop@gonggri.jp
mailto:rop@gonggri.jp

turnout is traditionally very low, often far below
30%.
RIES was developed by one of these Water Boards
in conjunction with a number of private
companies. It was used experimentally in the 2004
election by two of the Water Boards, and roughly
70 thousand voters cast their vote via the internet
in that election.

2006 parliamentary election

RIES, in a version called RIES-KOA1. was also
used for the 2006 national parliamentary election
to augment the postal voting available to Dutch
citizens residing outside of the Netherlands. (The
Netherlands do not offer postal voting to voters not
residing abroad.) Roughly 20.000 votes were cast
using RIES in that election. Because the
Netherlands have proportional representation,
these votes were in effect added to the national
totals for each candidate.

RIES-2008

A lot has happened with regard to electronic voting
in The Netherlands in the past few years. The
country was 100% e-Voting in 2006, and has since
abolished all electronic voting in polling stations.
Our previous research [1] into the security of the
Nedap system in use in 90% of the precincts
played an important part in the decision making
process. The use of RIES for these low-turnout
Water Board elections would make RIES the last
remaining electronic voting system in use in The
Netherlands.
The Water Boards would like to deploy RIES in its
present incarnation, called RIES-2008, for the
Water Board elections, which will all take place
simultaneously in November 2008. The ministry of
Transport and Water Works has drafted legislation
allowing for this. Our foundation has lobbied with
parliament for publishing the source code as well
as for clear technical requirements and a procedure
to formally test whether a proposed voting system
meets these requirements. As a consequence the
ministry created one and a half page of
requirements [2] which for the greater part simply
point to the recommendations issued by the
Council of Europe [3]. The source code to RIES
was published on the website www.openries.nl on
24 June 2008.

Claims regarding RIES
The www.openries.nl website lists a large number
of documents on RIES. On the page 'What do
others think?' we read (translated from Dutch):

Various prominent institutions have tested and
positively evaluated RIES:

• TNO Human Factors from Soesterberg
tested usability of the voting interface;

• A team of specialists from Peter Landrock’s
Cryptomathic (in Aarhus, Denmark) tested
the cryptographic principles;

• Madison Gurka from Eindhoven tested the
server and network setup and security;

• A team under supervision of Bart Jacobs
(Radboud University Nijmegen) did external
penetration tests.

Scientists [4] [5] [6] [7] [8] as well as other parties
[9] [10] have looked into various aspects of the
design and/or security of (parts of) RIES.
Apart from purely scientific work, RIES has been
subject to an accessibility test, a browser
compatibility test, a modules test, a disaster
recovery test, a functional acceptance test, a chain
test, a regression test, a risk analysis, a security and
usage evaluation, a server audit, evaluations of the
various elections held with it and a report [11] to
see how RIES matches up to the 112
recommendations of the Council of Europe with
regard to e-Voting [3] and many, many more
studies and reports.

Code examination
Duly impressed by the enormous amount of work
on RIES security, we quickly browsed over the
source expecting to find not even a hint of a single
problem. As it turned out, we found quite a few
problems, many of them rather serious issues.
Below is a list of things we spotted in a first
cursory look at the code.

XSS - Cross-Site Scripting

There are locations in the code where information
supplied by the user is passed back on the page
that is output by the system. For example we can
see2:

document.location="start.jsp?elid=
<%= request.getParameter("elid") %>";

2

1 KOA stands for 'Kiezen Op Afstand', which is the Dutch government's remote e-voting project

2 riesvotewin_source_v1.0/admin/index.jsp, line 29

as well as3:
<c:set var="section" value="<%=
request.getParameter("section")%>"/>

This probably means that when a user's browser
can be made to view a URL, an attacker can
execute Javascript statements within the context of
a user session on the election site. In the case of
RIES, the cryptographic routines that perform the
actual act of voting are implemented as client-side
Javascript, making it impossible for a users to
protect themselves against such attacks by turning
off Javascript.
We found out that we were not the only ones who
had spotted this problem. As mentioned above, the
RIES website lists an impressive number of studies
into various aspects of the system. Among them is
a report by GOVCERT.NL, the Dutch government
computer emergency response team. They found
this problem and reported it in September of 2006
when they did a 'web application scan' [12]. They
found the same 'elid' variable to be vulnerable,
and recommended that the input and parameters be
validated to eliminate the risk of Cross-Site
Scripting. They also ominously said (translated
from Dutch):

REMARK: The lack of sufficient input
validation can also lead to vulnerabilities such
as SQL-injection which are more serious in
nature. During the scan we have not found any
such vulnerability.

We are surprised that the makers of RIES proudly
present a two year old report of a quick scan on
their website without having implemented the
recommendations contained within.

Random tokens

The code contains a method of authenticating a
user via her/his mobile phone. The code calls this
challenge/response, however it is technically a
response only. When a user wants to log in, the
system generates a random password which is sent
to the user via SMS. The user must than enter this
password via the internet. Below is the piece of
code4 that does the actual generation of that
'random' token:

Random rGen=new Random(new Date().getTime());
String sResult="";
int i=0;
while(i<6) {
 sResult+=rGen.nextInt(10);
 i++;
}

Random() will present the same output when given
the same output of Date() and getTime(). Even
though the latter is in milliseconds, an attacker
would only need a few thousand guesses to figure
out the key sent to a phone that she does not own.
Since the code does not prevent someone from
trying a few thousand tokens, this would not
prevent the attacker from gaining access.
Note that an attacker can probably acquire a very
accurate idea of system time from the http headers
provided by the system or, if the goal is privilege
escalation, from the token received by SMS
following a valid login.

SQL injection

In 2006, GOVCERT.NL had warned RIES: if the
programmer doesn't check the inputs to his/her
code, the program may end up vulnerable to SQL
injection attacks. During the interaction with the
program, a user typically enters all sorts of text
strings, such as her username when prompted like
this:

SQL queries involving user-supplied information
in the RIES source code are all generated by
simply inserting whatever the user entered into a
query, without any checking. One of the queries
that follows is the one where the code associated
with the login box above tries to find the telephone
number for a user to send a special SMS token to
allow that user to log in5:

sbBuffer=new StringBuffer();
sbBuffer.append("select PHONE from OPERATOR
where OPERATOR_ID='"+sUsername+"'");

oRs=oStmt.executeQuery(sbBuffer.toString());

3

3 riesvotewin_source_v1.0/admin/sectionlinks.jsp, line 3

4 riesportal_source_v1.0.zip/WEB-INF/src/java/org/openries/portal/jaas/JAASHelperServlet.java, line 280

5 riesportal_source_v1.0.zip/WEB-INF/src/java/org/openries/portal/jaas/JAASHelperServlet.java, line 347

As is visible from this code, the SQL statement to
be processed by the database server is formed with
the sUsername string. The code does not contain
anything to sanitize that string first. If one enters
rop in the username box the query to the SQL
server would become:

select PHONE from OPERATOR where
OPERATOR_ID='rop'

Since the program finds no corresponding entry in
the OPERATOR_ID table it outputs 'login failed':

However, we can make the SQL statement succeed
by entering a string as follows:

The resulting SQL statement now looks like:
select PHONE from OPERATOR where
OPERATOR_ID='rop' OR 1=1; --

And as a result we now get:

The system has apparently sent the special
'random' access code (for problems with this code
see above) via SMS. Since the SQL statement
succeeded on the first user, we suspect this user
will have received the SMS.
To actually enter the system and prove further
vulnerabilities, one needs to play around a little
more. We were still experimenting with this when
the system suddenly said:

A few minutes later it said 'technical problem':

And then it finally said 'closed for the weekend':

We guess that since we were testing on a Friday
night, indeed the system could be down for the
weekend. It did however briefly re-open on the
following Saturday, but after a few attempts it was
again 'closed for the weekend'.

Exception handling

Often when exceptions are handled in the code, a
message is logged, but no action is taken. For
example, in _sendResponseSMS6, the exception
handlers are (in pseudo-code) very often structured
like the one in sendRessponseSMS:

_sendResponseSMS()
{
try {
 executeQuery
 if result {
 try { sendsms }
 catch(all) { return false }
 }
 else { return false }
}
catch (sqlexception) { logmessage }

return true
}

Since the code contains no 'return false' with the
catch(sqlexception), an exception from the
executeQuery will still cause the calling function
sendResponseSMS to succeed and cause the server
to display the 'enter-SMS-response' page. One of
the possible reasons why executeQuery would
throw an sqlexception would be a syntax error in

4

6 riesportal_source_v1.0.zip/WEB-INF/src/java/org/openries/portal/jaas/JAASHelperServlet.java, line 332

the SQL statement, for instance, caused by an
SQL-injection attempt. But since SQL syntax
errors are ignored, it becomes much easier to
construct SQL-injections. An attacker can target
specific SQL statements, without the need to keep
all the other statements free of errors.
The problem is that RIES tries to trap exceptions
from the library functions, and translate them in
true/false but often fails to do a 'return false'.
In the case of the SQL exceptions, it might be even
better not to trap these exceptions at all, but let the
JSP server handle this. In most cases an exception
should be a reason to abort any pending operations,
not to 'log message, and continue'.

Problem deriving key?

Then there's a part in org.openries.ripocs.config.
ConfigManager where the code is apparently
retrieving a stored 'salt' value from a file to create ,
through XOR, a smartcard key of some sort. The
final lines of the code7 that is supposed to be
generating the value are:

// derive AbelPiKey (16 bytes)
return PKCS5.PBKDF1(sPassPhrase, abSalt,
PKCS5_ITERATIONS, 16);

However, the entire function is commented out and
instead it now reads:

//temp for ketentest 1 because of existing
keys in smartcards

return Utils.stringToHex ("0123456789ABCDEF
FFFFFFFFFFFFFFFF0123456789ABCDEF");

We're not sure whether this presents an actual
security problem and what the magnitude of the
problem would be without learning much more
about what's going on here. We'll leave it at saying
this looks rather suspicious in production code.

Other issues and comments

The code exposes a development CVS server that
appears to be running on a regular home ADSL
connection8:

:pserver:arnout@cozmanova.xs4all.nl:4202/
usr/local/cvs-ries-rep

A public mail server is used9:
private static String EMAIL_SERVER =
"smtp.xs4all.nl";

It is not clear under what circumstances the system
sends mail and whether one could perform attacks
if one could destroy, intercept, modify or interject
batches of these e-mails. The concept of phishing
for voting credentials comes to mind.
The code also contains an SMS gateway with a
valid account10:

private String _sServiceURL="https://
secure.mollie.nl/xml/sms/";

private String _sUsername="mdobrinic";
private String _sPassword="riesdemo";
private String _sGateway="2"; // development
default; 1=more reliable; 2=cheaper

Assuming the authors want their voting system to
be optimized for 'more reliable' as opposed to
'cheaper', the setting of the sGateway value shows
how easy it is for undesirable development
artifacts to make it into production code.

Fundamental issues

Limited security against insiders

Elections like the ones performed with RIES
legally require secrecy of the vote. In RIES this
requires the operators to destroy information they
held at some stage during the process. If anyone
manages to hold on to this information the
publication of a verification file at the end of the
election allows whoever has this information to tie
every vote to an individual voter. Hubbers et al [6]
also conclude that the cryptography used in RIES
offers no protection against insiders.

RIES is built on certain cryptographic
primitives, like one-time signatures. Keys for
individual voters are generated centrally. There
are no anonymous channels. The structural
protection and safeguards offered by
cryptography are therefore rather limited.
Many of the guarantees in RIES thus rely on
organizational controls, notably with respect to
(voter) key generation, production of postal
packages, insider attacks (especially at the
server), integrity and authenticity of the
software, and helpdesk procedures.

The CIBIT rapport [7] concludes (translated from
Dutch):

Vulnerability of the STUF-C10 file, all
temporary variants hereof and KGenVoterKey.

5

7 riesripocs_source_v1.0.zip/src/org/openries/ripocs/config/ConfigManager.java, line 23

8 rieslogin_source_v1.0.zip/org/CVS/Root

9 riessystem_source_v1.0.zip/source/org/openries/system/messaging/EmailMessage.java, line 52

10 riessystem_source_v1.0.zip/source/org/openries/system/messaging/SMSConfig.java, line 22

https://secure.mollie.nl/xml/sms/
https://secure.mollie.nl/xml/sms/
https://secure.mollie.nl/xml/sms/
https://secure.mollie.nl/xml/sms/

Using the STUF-C10 file one can influence the
election and break vote secrecy. These objects
need to be destroyed as soon as the necessity
for the presence of these objects expires.

Compared to a postal election performed in
accordance with proper procedures, one must
conclude that violating vote secrecy on a massive
scale is now in the hands of one or at least very
few individuals.

Household PCs assumed secure

Hubbers et al [6] also describe a central
assumption during the design of RIES:

RIES assumes that the voter’s PCs are secure.
Attackers may however employ malware or
even ‘man-in-the-browser’ attacks to capture
voter’s PCs. Powerful attackers may thus
change votes, and so this involves a unique
potential risk for Internet elections.

Given the prevalence of attacks against client PCs ,
for example with regard to electronic banking, it
would seem inevitable for attacks to appear once
electronic voting becomes common. The fact that
candidates have apparently tried to submit faked
signatures to be on the Water Boards in the past11
proves there is an apparent potential for fraud
regarding these elections.

Conclusions
The scope of this paper is not to completely
understand the RIES system but only to outline a
number of immediately-visible security problems.
As a reality check, we are happy to have proven
that SQL injection actually works on the live
system. Further examination of RIES, including
actually attempting to disturb/manipulate elections
would likely require further study of the inner
workings of RIES and is beyond the scope of this
first examination.
We are amazed to find a system so apparently
well-studied yet so fundamentally and undeniably
insecurely programmed. Computer security
appears not to be part of the mindset of the people
programming RIES. For example, in the case of
the SQL-problems, it would have been better to
use prepareStatement in addition to sanitizing user
input. Scientific studies of RIES seem to have
concentrated on the more scientifically 'sexy'
theoretical security offered by the inventive
cryptographic protocols while largely ignoring the
threats posed by very straightforward and down-to-

earth attack methods that are much more likely to
be used in the real world.
To create a system that appears secure, there are
two approaches. The proper approach is to design a
system with security in mind. The other approach
is to retrofit an insecure system with security-
measures that make a system look secure but
which in fact add little security. Such measures are
usually intended to impress onlookers. There are
situations where adding an SMS-token like the one
used in RIES is a useful addition to other security
measures. However in combination with the
proven lack of security awareness during
implementing the system, RIES' SMS-token
appears to fall in the impress-the-onlookers
category.
The www.openries.nl site says: "Various prominent
institutions have tested and positively evaluated
RIES". This research shows one must be very wary
if scientific and other studies into some part of a
not yet published and changing system are used to
implicitly claim the entire system is secure.
No amount of voluntary studies of some part of a
voting system - often paid for by stakeholders
wanting to see the system in use - can ever replace
clear and stringent government-imposed
requirements that include independent source code
review. Such reviews need to pragmatically and
'holistically' look for security problems as well as
test the code against more formal coding standards
and practices.
In their 2004 article 'Stemmen via Internet geen
probleem' [5] Hubbers and Jacobs 'vote in favour'
of use of this system when they state (translated
from Dutch):

Summarizing, [RIES] is a relatively simple,
original and understandable system that has
been implemented with the appropriate care
and transparency. [...] When the use of RIES
during these Water Board elections is involved,
we clearly vote in favour!

We pose that RIES has clearly not been
implemented with 'appropriate care'. Given the
dependence of society on their judgment, scientists
should probably refrain from endorsing electronic
voting systems at least until the entire system has
been examined.
The Water boards need to be commended for the
publication of source code and all documentation
relevant documents as well as for allowing outside
researchers to study the security of the system. It
seems that although they are struggling with

6

11 Hoogheemraadschap van Rijnland, Bestuursverkiezing Rijnland moet door fraude deels over, Persbericht 12 november
2004, http://www.rijnlandkiest.net/asp/get.asp?xdl=../views/rijnlandkiest/xdl/Page&ItmIdt=00001440

obvious and serious code quality problems, they
are at least trying to do the right thing.
The amount of problems we found, as well as the
class of problems, mean RIES must undergo much
more testing and quite possibly partial code
rewrites. Use of this code base in real-world
e lec t ions th is year would seem highly
irresponsible. A particularly dangerous - yet
expected - reaction to this study would be to
quickly fix the problems we found, pretend RIES
is now sufficiently secure and use it in elections.
The Dutch government had to be forced by a
majority in Parliament to develop any standards at
all for internet voting. The resulting minimalist
legal requirements [2] (covering a whole page and
a half) or the recommendations of the Council of
Europe [3] that these requirements point to contain
absolutely nothing that would prevent problems of
this magnitude.
The security of RIES is highly dependent on
proper procedures to be followed. Given that the
whole point of an election is to be able to
independently verify the outcome as well as the
secrecy of the vote, protection needs to be strong
against insiders as well as against outsiders. The
common notion that insiders are somehow more
trustworthy does not match the reality of election
problems worldwide. This makes RIES, and many
systems like it, unsuitable for use in public
elections. The assumption of a secure PC in every
voter's home simply does not match reality.

Recommendations

Recommendations to government

RIES as it is should not be used for any
elections. We strongly believe the system in its
present state does not meet any imaginable
responsible criteria for a system of this importance.
Even if all our recommendations were followed,
we feel the fundamental problems listed in this
paper mean RIES cannot be used in elections that
require secrecy of the vote.
The Water Boards must not be believed if they
say RIES can be quickly fixed. The problems
described in this paper point to a serious lack of
security awareness at the time RIES was
programmed. The vulnerabilities found in this
quick study sufficiently warrant thorough and
independent study to determine whether the
current code base of RIES is suitable at all for use
in elections.
For critical applications such as election
systems, responsible coding standards and
other criteria need to be developed and

independently tested against. No systems should
be approved or used in elections until such tests are
part of the applicable legal requirements.
The fundamental shortcomings of RIES and
systems like it need to be given more weight.
Certain attacks, such as breaking the secrecy of the
vote for the entire population, are much harder to
perform in a postal system. RIES offers very
limited protection against insider attacks, which in
our view is not appropriate for public elections.

Recommendations regarding RIES

We feel that fixing RIES can only be of scientific
interest. Even if one were to implement the
following recommendations:
All problems described in this document need to
be fixed. In some parts, re-writing the code may
make more sense than trying to 'retrofit' security.
Further problems need to be identified and
fixed. We did the most cursory of examinations
without a deep understanding of the interactions
between the different parts of RIES. Given these
circumstances, the probability that we spotted
everything that would need to be spotted is very
small.
The apparent management issues that led to
these problems need to be addressed. Who hired
programmers that put unchecked user-supplied
strings into SQL-queries? Who organized code
quality assurance? How come the XSS problems
pointed out by GOVCERT.NL almost two years
ago were not sufficiently addressed?

The resulting system would still not be suitable for
use in elections because it is based on overly
optimistic assumptions regarding the security of
home PCs and (more importantly) because it
fundamentally lacks adequate protection against
insiders.

Acknowledgements
The authors would like to thank Simon Bouwman
of "Het Waterschapshuis" for giving permission to
test some of our attacks against the system.
Furthermore they would like to thank the entire
crew of "Wij vertrouwen stemcomputers niet" for
their insight and for helping in proofreading this
paper.

Reaction Het Waterschapshuis
As stated in the introduction, we agreed with "Het
Waterschapshuis" to include a brief reaction with
our findings. They responded as follows:

7

An advantage of open source is that the code
can be reviewed and improvements of the code
can be made. The published code of RIES is not
yet the production code. Internal reviews and
tests have to be made. Recommendations from
external - as in this paper - are welcome. New
versions of the code will be published in the
coming weeks.

As mentioned in the paper, RIES is a rather
complex (internet) voting system. RIES contains
several sub-systems. Each sub-system is a
combination of software, configuration and
administrative procedures. Each sub-system has
very different tasks and settings and also
different security requirements. For instance,
the VoteWindow is the only sub-system which is
public to the world-wide Internet. All other sub-
systems are limited access only, not accessible
through the internet. The RIES-Portal access
will be controlled by VPN, RIES-RIPOCS is
only accessible via RIES-Portal, and RIES-
ROCMIS is an offline machine used within a
proper set of administrative procedures.
Therefore, RIES cannot be evaluated from
source code alone to measure the security
strength.

Keep in mind; this part is NOT production code
yet. Many of the issues are related to proper
input validation. And we agree that proper
input validation is required and we will fulfill
that requirement. Mainly Struts input validation
mechanism will be used. In the published
source packages and the development system
investigated, the feature was not switched on
for development reasons. Therefore again:
we’re in a state of functional sequence test
(ketentest) and not yet in production.

The original response was slightly longer and
added a list where each issue we found was
discussed separately. Since this was a little too
long to be included in this paper, we agreed to
include a link to the full response, which will be
available on the RIES website at
http://www.openries.nl/wvsn-paper .
There is a lot to be said regarding this reaction, but
that would turn this paper into a discussion forum.
Suffice it to say that we stand by our original
conclusions and recommendations and that the
debate on whether or not RIES is suitable for
public elections is very likely to continue.

References
[1]
 Rop Gonggrijp and Willem-Jan Hengeveld,

Studying the Nedap/Groenendaal ES3B voting
computer, a computer security perspective, 2007,

Proceedings of the USENIX/Accurate Electronic
Voting Technology workshop,
http://portal.acm.org/citation.cfm?id=1323112

[2]
 Ministerie van Verkeer en Waterstaat, Regeling
waterschapsverkiezingen 2008, 15 mei 2008/Nr.
CEND/HDJZ-2008/587, Staatscourant 23 mei
2008, nr. 97 / pag. 11,
http://www.wijvertrouwenstemcomputersniet.nl/
images/e/e7/SC85731.pdf

[3]
 Council of Europe, Recommendation Rec(2004)11
of the Committee of Ministers to member states on
legal, operational and technical standards for e-
voting, 2004.
https://wcd.coe.int/ViewDoc.jsp?id=778189

[4]
 E.-M. Hubbers, B. Jacobs, and W. Pieters. RIES -
Internet Voting in Action. In R. Bilof, editor,
COMPSAC'05, Proceedings of the 29th Annual
International Computer Software and Applications
Conference, COMPSAC'05, pages 417-424. IEEE
Computer Society, 2005. 26-28 July 2005, http://
www.cs.ru.nl/~hubbers/pubs/compsac2005.pdf

[5]
 E.-M. Hubbers, B. Jacobs. Stemmen via internet
geen probleem, Automatisering Gids #42, 15
October 2004, p.15, http://www.openries.nl/
aspx/download.aspx?File=/contents/pages/77743/
stemmenviainternetgeenprobleem.pdf

[6]
 Engelbert Hubbers, Bart Jacobs, Berry
Schoenmakers, Henk van Tilborg and Benne de
Weger, Description and Analysis of the RIES
Internet Voting System, 24 June 2008,
http://www.win.tue.nl/eipsi/images/
RIES_descr_anal_v1.0_June_24.pdf

[7]
 Ir. Jaap van Ekris, CIBIT, Beoordeling KOA, Een
beoordeling van de integriteit van "Kiezen op
Afstand", 11 September 2008,
http://www.openries.nl/aspx/download.aspx?
File=/contents/pages/77743/eindrapportcibit.pdf

[8]
 Nijmegen University - Security of Systems,
Server Audit van RIES, 23 July 2004,
http://www.openries.nl/aspx/download.aspx?
File=/contents/pages/77743/reportkun.pdf

[9]
 Jens Groth, CryptoMathic, Review of RIES
(v 0.3), Cryptomathic A/S, 21 January 2004,
http://www.openries.nl/aspx/download.aspx?
File=/contents/pages/77743/reviewofries.pdf

[10]
Lucas Kruijswijk. Internetstemmen met RIES
onder de loep, 2006.
http://www.wijvertrouwenstemcomputersniet.nl/
Internetstemmen_met_RIES_onder_de_loep

[11]
Aanbevelingen van de Raad van Europa, Evaluatie
voorziening internetstemmen RIES, conform
artikel 5 onderdeel b Regeling waterschaps-
verkiezingen 2008, version 6, June 2008,
http://www.openries.nl/aspx/download.aspx?
File=/contents/pages/77726/
evaluatieaanbevelingenraadvaneuropa.pdf

[12]
GOVCERT.NL, Webapplicatie-scan, Kiezen op
Afstand, 1 September 2006, http://
www.openries.nl/aspx/download.aspx?File=/
contents/pages/77743/webapplicatie-scan.pdf

8

